Advanced Agricultural Machinery and Management

ES 4101 (2/25:10)

Teaching Materials

Prepared By
G.V.T.V. Weerasooriya (B.Sc., MPhil.)
Senior Lecturer,

Department of Agricultural Engineering and Soil Science,
Faculty of Agriculture,
Rajarata University of Sri Lanka,
Puliyankulama, Anuradhapura,
Sri Lanka.

G.V.T.V. Weerasooriya, Dept. of Agric. Eng. & Soil Science, FDA, RUSL
PREFACE

These teaching materials on Advanced Agricultural Machinery and Management (AS 4117) is prepared by myself, to be submitted to the 162nd Faculty Board, Faculty of Agriculture, RUSL on 02nd November, 2016. Hereafter, these materials could be used by the undergraduates who are enrolled for the Advanced Agricultural Machinery and Management (AS 4117) in B.Sc. (Agric.) Special Degree programme in Rajarata University of Sri Lanka to improve their learning environment.

November, 2016

G.V.T.V. Weerasooriya
TABLE OF CONTENT

1. INTRODUCTION

1.1 Course Capsule 01
1.2 Course ILOs 01
1.3 Lesson Sequence 01
1.4 Assessment Strategy 03

2. TILLAGE AND TRACTION

2.1 Optimum soil condition for tillage and relevant soil properties 04
2.1.1 Tillage 04
2.1.2 Particle-Size Distribution 04
2.1.3. Soil Texture 04
2.1.4 Soil Structure 05
2.1.5 Soil Compaction 05
2.1.6 Consolidation 06
2.1.7 Soil Consistency 06
2.2 Stress in Soil Mass
2.2.1 Normal stress (σ) 06
2.2.2 Shear stress (τ) 06
2.2.3 Soil Strength 06
2.2.4 Measurement of Soil Strength 07
2.2.4.1 Measurement of Soil Compression Strength 07

2.2.4.2 Measurement of Soil Shear Strength 08

2.3 Mechanics of Interaction between Agricultural Soil and Tillage Equipment 09

2.3.1 Forces acting upon a tillage tool 10

2.4 Traction 14

2.4.1 Traction Mechanics 14

2.4.2 Basic Concepts of Traction 14

2.4.3 Free Body Diagram for Simple Straight Running 4– Wheel Tractor 16

2.4.4 Free Body Diagram for Simple bend 17

2.4.5 Weight Transfer 18

2.4.6 At Inclination 19

2.4.7 Tractive losses of 4 wheel tractor 19

2.4.8 Traction Aids 20

3. TESTING AND EVALUATION OF FARM MACHINERY

3.1 Testing 22

3.2 Evaluation 22

3.3 Beneficiaries of Testing 22

3.4 Standard for Testing 22

3.4.1 OECD 22

3.5 Evaluation of Machinery 23

3.5.1 Standards for Evaluation 23
3.5.2 Testing and Evaluation of Farm Machinery 24

3.6 Safety Test and Ergonomics 25

3.6.1 Noise 25

3.6.2 OSHDA 25

3.6.3 Measuring of Noise 26

3.6.4 Vibration 26

3.7 Ergonomics 27

3.8 Safety Testing 27

3.8.1 Safety Measuring Instruments 27

4 MACHINERY MANAGEMENT

4.1 Selection of Farm Machinery 28

4.2 Machinery Selection Criteria 28

4.2.1 Field Capacity 28

4.2.2 Field Efficiency 29

4.3 Machine brake down 30

4.3.1 Machine reliability

4.4 Machinery cost 30

4.4.1 Ownership cost 31

4.4.2 Operating Costs 32

4.4.3 Timeliness cost 34

4.5 Farm machinery selection 34
4.6 Machinery replacement

5. FLUID MACHINERY

5.1 Water Pumps

5.2 Positive displacement VS variable displacement water Pumps

5.3 Positive Displacement Pumps

 5.3.1 Rotary Pump

 5.3.2 Reciprocating Pump

5.4 Variable Displacement Pump

 5.4.1 Centrifugal Pump

5.5 Other Pump Types

 5.5.1 Jet Pump

 5.5.2 Air Lift Pump

 5.5.3 Vane Pump

 5.5.4 Hydraulic Ramp

Reference
LIST OF TABLES

Table 2.1 Particle size distribution
Table 3.1 Permissible noise levels
Table 5.1 Positive displacement and variable displacement water pumps

LIST OF FIGURES

Figure 2.1 Textural Triangle
Figure 2.2 Measurement of Soil Strength
Figure 2.3 Systematic Diagram of Tractor with Tillage Implement
Figure 2.4 Forces Acting on Tillage Tool
Figure 2.5 Apparent Co-efficient of friction with soil moisture content
Figure 2.6 FBD for simple straight running tractor
Figure 2.7 FBD for Simple Bend
 Figure 2.8 (a) without drawbar pull
 Figure 2.8 (b) with drawbar pull
Figure 2.9 FBD at inclination
 Figure 2.10 (a) Mud wheel
 Figure 2.10 (b) Lug design
 Figure 2.10 (c) Chain
 Figure 2.10 (d) Tracks and halftracks
 Figure 2.10 (e) Tyre filled with water
Figure 4.1 Farm machinery selection 35

Figure 5.1 Classification of water pumps 36

Figure 5.2 Rotary pumps 37

Figure 5.3 Diaphragm Pump 37

Figure 5.4 Lift Pump 38

Figure 5.5 Force Pump 38

Figure 5.6 Centrifugal Pump 39

Figure 5.7 Volute Type Casing 39

Figure 5.8 Diffuser Type Casing 40

Figure 5.9 Centrifugal Pump Classification as Using Stages 40

Figure 5.10 Centrifugal Pump Classification as Impeller Type 40

Figure 5.11 Centrifugal Pump Classification as Position of the Casing 41

Figure 5.12 Centrifugal Pump Classification as Power Supply 41

Figure 5.13 Self-priming Water Pump 42

Figure 5.13 Turbine Pump 42

Figure 5.14 Mixed Flow Pump 42

Figure 5.15 Jet Pump 43

Figure 5.16 Air Lift Pump 43

Figure 5.17 Vane Pump 44

Figure 5.18 Hydraulic Ramp 44
LIST OF PLATES

Plate 2.1 Cone Penetrometer 07
Plate 2.2 Vane Shear Tester 08
1. INTRODUCTION

1.1 Course Capsule

Tillage, traction: optimum soil condition for tillage, relevant soil properties, mechanics of interaction between soil and tillage equipment and traction devices; testing and evaluation of farm machinery; concepts of machinery management; machinery depreciations; fluid machinery; pump turbine

1.2 Course ILOs

The students will be able to,

1. Explain the concept of Soil mechanics, tillage, traction and rolling resistance with practical application
2. Identify the optimum soil condition for tillage
3. Acquire the knowledge on soil interaction with farm machinery
4. Explain the procedure and impotence of testing and evaluation of farm machinery
5. Explain the basic principles of farm machinery management
6. Calculate the depreciation of farm machinery
7. Explain the fundamental s of fluid machinery with application

1.3 Lesson Sequence

<table>
<thead>
<tr>
<th>Week</th>
<th>Lesson Title</th>
<th>Number of Hrs.</th>
<th>Methods of Teaching</th>
<th>Methods of Assessing</th>
<th>Change of attitudes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Theory</td>
<td>Tutorials</td>
<td>IL</td>
<td></td>
</tr>
<tr>
<td>1-2</td>
<td>Soil mechanics and Tillage</td>
<td>2</td>
<td>2</td>
<td>L, V, Q/A</td>
<td>QZ, EE</td>
</tr>
<tr>
<td></td>
<td>Tutorial discussion</td>
<td>2</td>
<td>2</td>
<td>GD</td>
<td>IR</td>
</tr>
<tr>
<td>3-4</td>
<td>traction and rolling resistance</td>
<td>2</td>
<td>2</td>
<td>L, V, Q/A</td>
<td>AS, EE</td>
</tr>
<tr>
<td></td>
<td>Tutorial discussion</td>
<td>2</td>
<td>2</td>
<td>GD</td>
<td>IR</td>
</tr>
<tr>
<td>5</td>
<td>optimum soil condition for tillage, relevant soil properties</td>
<td>2</td>
<td>0</td>
<td>L, V, Q/A, AS, QZ, EE</td>
<td>GD</td>
</tr>
<tr>
<td>6-7</td>
<td>Tutorial discussion</td>
<td>1</td>
<td>2</td>
<td>IR</td>
<td>TW, LS, CM</td>
</tr>
<tr>
<td>6-7</td>
<td>mechanics of interaction between soil and tillage equipment and traction devices</td>
<td>4</td>
<td>0</td>
<td>L, V, Q/A, QZ, EE</td>
<td>GD</td>
</tr>
<tr>
<td>6-7</td>
<td>Tutorial discussion</td>
<td>2</td>
<td>2</td>
<td>IR</td>
<td>TW, LS, CM</td>
</tr>
<tr>
<td>6-7</td>
<td>testing and evaluation of farm machinery</td>
<td>5</td>
<td>0</td>
<td>L, V, Q/A, D, QZ, EE</td>
<td>GD</td>
</tr>
<tr>
<td>6-7</td>
<td>Tutorial discussion</td>
<td>1</td>
<td>2</td>
<td>IR</td>
<td>TW, LS, CM</td>
</tr>
<tr>
<td>8-9</td>
<td>concepts of machinery management</td>
<td>4</td>
<td>2</td>
<td>L, Q/A, D, AS, QZ, EE</td>
<td>GD</td>
</tr>
<tr>
<td>10-11</td>
<td>machinery depreciations</td>
<td>2</td>
<td>2</td>
<td>L, Q/A, D, AS, QZ, EE</td>
<td>GD</td>
</tr>
<tr>
<td>10-11</td>
<td>Tutorial discussion</td>
<td>2</td>
<td>2</td>
<td>IR</td>
<td>TW, LS, CM</td>
</tr>
<tr>
<td>14-15</td>
<td>fluid machinery</td>
<td>4</td>
<td>2</td>
<td>L, V, Q/A, D, AS, QZ, EE</td>
<td>GD</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>25</td>
<td>10</td>
<td></td>
<td>10</td>
</tr>
</tbody>
</table>

1.4 Assessment Strategy

End semester examination 70%

Continuous assessments 30%

Continuous assessments: Assignments, Tutorials, Practical reports
2. TILLAGE AND TRACTION

2.1 Optimum soil condition for tillage and relevant soil properties

2.1.1 Tillage

Tillage is the agricultural preparation of the soil by plowing, ripping, or turning it. There are two types of tillage: primary and secondary tillage.

2.1.2 Particle-Size Distribution

Soil consists principally of mineral and organic particles of various sizes. The variation in size of the particles and the proportionate amount of fine coarse minerals imports for physical and chemical pro

Table 2.1 Particle size distribution

<table>
<thead>
<tr>
<th>British System</th>
<th>U.S.D.A. System</th>
<th>International System</th>
</tr>
</thead>
<tbody>
<tr>
<td>Separates</td>
<td>Ø (mm)</td>
<td>Separates</td>
</tr>
<tr>
<td>Fine gravel</td>
<td>2.0 – 1.0</td>
<td>Fine gravel</td>
</tr>
<tr>
<td>Coarse sand</td>
<td>1.0 – 0.2</td>
<td>Coarse sand</td>
</tr>
<tr>
<td>Fine sand</td>
<td>0.2 – 0.04</td>
<td>Medium sand</td>
</tr>
<tr>
<td>Silt</td>
<td>0.04 – 0.01</td>
<td>Fine sand</td>
</tr>
<tr>
<td>Fine silt</td>
<td>0.01 – 0.002</td>
<td>Very fine sand</td>
</tr>
<tr>
<td>Clay</td>
<td><0.002</td>
<td>Silt</td>
</tr>
<tr>
<td></td>
<td></td>
<td>clay</td>
</tr>
</tbody>
</table>

Source: Majumber, S.P. and Singh, R. A. 2002

2.1.3. Soil Texture

Soil texture is the relative proportion of different grain size of mineral particles in a soil. Particles are grouped according to their size, which are called soil separates. These separates are typically named clay, silt and sand.
2.1.4 Soil Structure

Soil structure describes the arrangement of the solid parts of the soil and of the pore space located between them.

2.1.5 Soil Compaction

Compaction is the process by which the soil particles are artificially re-arranged and packed together into closer state of contact.
2.1.6 Consolidation

Consolidation is a gradual process of volume reduction of under the sustained lauding.

2.1.7 Soil Consistency

The physical status of the fine grained soil at particular water content is known as its consistency

2.2 Stress in Soil Mass

2.2.1 Normal stress (σ)

Act perpendicular to a plane. In soil generally compressive, hence compact the soil and increase the density

2.2.2 Shear stress (τ)

Act parallel the plane. Act in pairs as a couple on opposite directions

2.2.3 Soil Strength

- The ability of soil mass to support an imposed loading
- The capacity of a soil to resist or endure an applied force
- Soil load bearing capacity
2.2.4 Measurement of Soil Strength

Figure 2.2 Measurement of Soil Strength

2.2.4.1 Measurement of Soil Compression Strength

- Use cone penetrometer
- Unit N/m²

Plate 2.1 Cone Penetrometer
2.2.4.2 Measurement of Soil Shear Strength

Vane Shear tester

Plate 2.2 Vane Shear Tester

- Consist of thin bladed vanes that can be pushed into the soil with minimum disturbance
- A torque applied to rotate the vane is related to the shear strength of the soil

\[
K_{shaft} = \left[\frac{\pi D_s^2}{2} \left(\frac{h}{D_s} - \frac{1}{6}\right) + \frac{\pi D^2}{2} \left(\frac{H}{D} + \frac{1}{3}\right)\right]
\]

\[
\tau = \frac{T}{K_{shaft}}
\]

\(\tau\) - Calculated Shear Stress in Pascal
\(T\) - Measured Torque in Nm
\(K_{shaft}\) – Revised Vane Shear Constant in m³
\(D\) - Shear Vane Diameter in m
\(D_s\) - Shaft Diameter in m
\(H\) - Shear Vane Height in m
\(h\) – Immersion Depth of the Vane in m

(Burns et al., 2009)
2.3 Mechanics of Interaction between Agricultural Soil and Tillage Equipment

![Systematic Diagram of Tractor with Tillage Implement](image)

Figure 2.3 Systematic Diagram of Tractor with Tillage Implement

Force – Any action that change or tend to change the state of rest or motion of a body

Pull – The total force exerted upon the implement by a power unit. Generally at some angle above the horizontal may or may not be parallel to the line of motion.

Draft – Horizontal component of pull parallel to the line of motion

Side Draft – Vertical component of the pull perpendicular to the line of motion

Specific Draft – Draft per unit area of tilled cross section. Usually in N/cm²

Torque – The moment of the force tending to produce rotation about a point. Unit Nm

Work – The production of force (in direction of motion) time the distance through which the force acts. Units Nm or Joule (J)

Power – Rate of doing works. Units kW or hp

Draw bar power (Dbp) – Power actually required to pull the implement at uniform speed.

Kilowatt – hour – The quantity of work performed when one kW is used for one hour
2.3.1 Forces acting upon a tillage tool

A tillage implement moving at a constant speed is subjected to three main forces that must be in equilibrium.

1. Force of gravity acting upon the implement
2. Forces acting between the implement and the tractor
3. The soil forces acting upon the implement

Useful soil forces – Tool must overcome the forces in cutting, lifting, breaking or pulverizing and turning the soil

Parasitic soil forces – Frictional and rolling resistant forces that act upon stabilizing such as land side and sole of a plow or upon supporting wheels.

![Figure 2.4 Forces Acting on Tillage Tool](image)

R – Resultant of all soil forces acting upon the tool
L – Longitudinal or directional component of R
S – Lateral component of R
V – Vertical component of R
Rh – Resultant of L and S

All tillage tools consist of inclined planes for applying pressure to the soil. Frictional forces are involved due to sliding action of soil. Frictional forces due to sliding soil on soil

\[\mu = \frac{F}{N} \]

\(\mu\) – coefficient of friction
F – Frictional force tangent to the surface
N – Normal reaction (Normal force)
Frictional forces due to movement of soil on metal (adhesive forces). As adhesive forces are due to moisture films, magnitude varies with the moisture content (Figure 03).

Soil characteristics that effects abrasiveness are,

- Hardness
- Shape and size of soil particles
- Moisture content of soil

Abrasive resistant of the tool depend on

- composition of materials
- Hardness
- Strength
A layer of special abrasive resistance alloy (nonferrous chromium–cobalt–tungsten or high carbon iron based alloy containing chromium, tungsten, manganese, silicon and molybdenum) is used on cutting edges of tillage tools to reduce wear rates. (Hard facing or hard surfacing)

2.3.2 Factors Effecting Draft of a Plow

- Soil type
- Soil condition (MC and BD)
- Plowing speed
- Plow bottom shape
- Depth of plowing
- Width of cut
- Types of attachments to the plow
- Plow adjustments

Example 2.1:

A tractor operates at a speed of 8.8 km/h and use 6x356mm mould board plow bottom. If plowing depth is 140mm and unit draft is $5.51 \times 10^4 \text{Nm}^2$. Calculate;

a) Plowing rate (ha/h)

b) Total draft requirement

Example 2.2

Tractor operates at speed of 5.6 km/hr. 4x355 mm wide mould board plow is attached to it and plowing depth is 137.5mm.

a) If the field efficiency is 78%, calculate the plowing capacity per day. (for 8h)

b) If the soil resistance is $5.51 \times 10^4 \text{Nm}^2$, calculate the total draft requirement.

c) What is the approximate HP of the tractor?
Example: 2.3

A tractor with 4x500mm mould board plow is used to plow 10 ha land. Tractor manipulate the 10 h /day.

I. When the tractor speed is 8km/h calculate the days that required for finished the work.

II. If the area is increased up to 20 ha and working period per day change up to 9hrs, calculate the plowing width when farmer want to finish work at previous time period.

Example: 2.4

A farmer has to plow one hectare field at the forward speed of 2.5 km/hr. using a single cattle plow with a bottom width of 150 mm. If the weight of the draught animal is 500kg and it can pull equivalent pull of 10% of its body weight. Calculate,

a) Power developed by the animal

b) Time taken to plow the field

Example: 2.5

A four bottom moldboard plow travels at a forward speed of, 6.5 kmh-1, width of a plow bottom is 320 mm and the depth of working is 140.5 mm. Determine,

a) The field capacity in ha/day, if it work 6 hours per day

b) The total draft, if the soil resistance is 5.62×10^4 Nm2

Example: 2.6

A tractor operates at speed of 6.3 km/h. 4×346 mm wide mold board plow is attached to it and ploughing depth is 126.5 mm.

a. If the field efficiency is 76%, calculate the ploughing capacity per day.

b. If the soil resistance is 5.63Nm2, calculate the total draft requirement.

c. What is the approximate Horse power of the tractor?
2.4 Traction

TRACTION is the term applied to the driving force developed by the wheel, track or any other traction device.

TRACTION can be defined as the ability of the vehicle tractive element to generate enough force to overcome all types of vehicle resistance force.

The primary purpose of a vehicle tractive element is to provide sufficient;
- Flotation – ability of a vehicle to travel without excessive shrinkage.
- Traction – force for moving a vehicle.

2.4.1 Traction Mechanics

Traction is developed by the interaction of mechanical devices with soil. Theoretical experimental studies and field tests provide the general nature of these interaction for analysis and design of tractive system.

2.4.2 Basic Concepts of Traction

Travel Reduction

Travel Reduction (TR): Reduction in actual forward speed that occurs due to increased slippage when the drawbar load is increased. Theoretically, Slip and Travel reduction are not identical although they are often used interchangeably. Travel reduction must occur to develop drawbar pull
- Tire lug must compress the soil allowing it to develop tractive force
- Rear movement results in travel reduction

Determination of travel reduction
- Measure the distance of travel five rounds of rear wheel (S_1)
- Calculate the theoretical distance by radius or circumference (x)
- Travel Reduction $= \frac{x-S_1}{x} \times 100\%$
Factors affecting for travel reduction

- Soil surface
- Implement
- Lug design of tractive wheel
- Air pressure of tractive wheel

Traction Ratio

Dynamic Traction ratio (DTR) is the ratio of drawbar pull (F_{db}) over the dynamic weight on the driving wheels. A high DTR needed for high drawbar pull. For that;

- Improved lug design
- Radial ply design

Increase weight will also increase pull at the cost of higher compaction and increased stress on the axles

Traction Power Efficiency

This is a ratio of the drawbar power to the power input into the final drive axle or axels. Traction Efficiency (TE) is the fraction of axle power (P_{a}) that is converted to drawbar power (P_{db}) by the drive wheels

\[\text{TE} = \frac{P_{db}}{P_{a}} \]

Factors affecting for lowering tractive efficiency

- Steering
- Rolling resistance
- Slip and friction
- Deflection of the tractive device
Co-efficient of traction

This the ratio of the tractor drawbar pull to the dynamic load on the tractive device

Factors affecting for coefficient of traction

- Type of traction device
- Type of inflation pressure
- Soil type and status
- Soil moisture content
- Lug design
- Dimension of the tractive device
- Soil pressure distribution

2.4.3 Free Body Diagram for Simple Straight Running Wheel Tractor

![Free Body Diagram](image)

- **C.G.** – Centre of gravity
- **H.P.** – Hitch point
- **y** – Drawbar height
- **L** – Distance between rear axle to CG
- **R** – Soil resistance
- **T_f** – Ttractive force
- **W** – Wheelbase
- **WF** – Wheelbase
- **WR** – Wheelbase

Figure 2.6 FBD for simple straight running tractor
2.4.4 Free Body Diagram for Simple bend

\[V^2 = \frac{X}{Y_g} gr \]

\(X_g \) = half or differential length, if not it should be given
\(r \) = radius of the curve
\(Y_g \) = height of CG
\(W \) = weight of the tractor
\(g \) = gravitational acceleration

Figure 2.7 FBD for Simple Bend

Example 2.7

A four wheel tractor has following chassis features; Wheal length 2.2 m and Height of the center of gravity 75 cm, Determine the maximum speed that can turn 50 m radius bend.

Example: 2.8

A four-wheel tractor has following specifications; Front wheel reaction = 1500 kg, Rear wheel reaction = 2500 kg, Drawbar pull = 1000 kg, Drawbar height = 50 cm and Wheal base = 1 m. Calculate;

a) Weight transfer
b) Maximum drawbar pull

Example: 2.9

A four wheel tractor with 4 m wheel base, 500 mm drawbar height, 5000 N drawbar pull showed 1700 N and 5700 N front and rear wheel reaction, respectively. Determine
1. maximum drawbar pull
2. front weight that required to increase drawbar pull up to 20 000 N
3. At maximum drawbar pull rear wheel reaction

2.4.5 Weight Transfer

\[\text{Weight transfer} = \frac{P_y}{x} \]

\[R_2 = \frac{P_{\text{max}}y}{x} \]

Figure 2.8 (a) without drawbar pull

Figure 2.8 (b) with drawbar pull
2.4.6 At Inclination

\[F_r = W_t \sin \beta + TF_r + TF_r + P \cos \alpha \]

\[P = \frac{F_r - TF_f - TF_r - W_t \sin \beta}{\cos \alpha} \]

- **Fr** - Traction Force
- **Wt** - Weight of tractor
- **TF** - Rolling resistance forces
- **P** - Draw bar pull
- **α** - Angle of line of pull
- **β** - Slope angle

![Figure 2.9 FBD at inclination](image)

2.4.7 Tractive losses of 4 wheel tractor

Transmission losses – Losses occur power transmission system up to tractive device

Slope losses – Tractive losses due to uneven fields

Rolling losses – Tractive power required for moving /rolling the tractor

Wheel slip losses – Tractive losses due to wheel slipping
2.4.8 Traction Aids

Figure 2.10 (a) Mud wheel

Figure 2.10 (b) Lug design

Figure 2.10 (c) Chain
Figure 2.10 (d) Tracks and half tracks

Figure 2.10 (e) Tyre filled with water

Example: 2.10

A tractor moving with 6 km/h attached with 4 x 400 mm moldboard plow. The line of drawbar is making 20° angle with the floor and 325 mm away from the rear wheel floor contact point. Weight of the tractor, wheel base and differential length are 1800 kg, 2.5 m and 1.6 m, respectively. Center of gravity is located at 1 m ahead from the rear wheel and at 0.8 m height form the ground level.

Determine: Drawbar pull, Drawbar horse power, if soil resistance 8 x 10³ kg/m², plowing depth and the maximum speed that tractor can take 3 m radius bent.
3. TESTING AND EVALUATION OF FARM MACHINERY

3.1 Testing

Analysis of the behavior of a machine compared with well-defined standard under ideal repeatable conditions. Eg: measuring of drawbar pull of a tractor

3.2 Evaluation

Measurement of machine performances under real farm conditions. There are not repeatable. Eg: check the performance of combined paddy thresher in North Central Province of Sri Lanka.

3.3 Beneficiaries of Testing

a) Machinery importers
b) Machinery manufactures
c) Policy makers/Bankers
d) Farmers (Users)
e) Extension workers

3.4 Standard for Testing

- ASAE – American standard
- OECD – European
- ISO – International Standard

3.4.1 OECD

- Mostly used in Agric. Machinery
- Many OECD station around the world
- We are not repeating these tests

OECD Tractor test code

- Complete tractor specification
- Engine power and fuel consumption
Teaching materials - Advanced Agricultural Machinery & Management (ES 4101)

- Power and capacity of hydraulic system
- Turning area and turning radios
- Analysis of smoke emission
- Selection of center of gravity
- Draw bar performances
- Break performances
- Roll Over Protection Structure (ROPS) test

3.5 Evaluation of Machinery

They do not have international acceptance. Local standards according to the local condition. Have to follow standards

3.5.1 Standards for Evaluation

- Indian Standards – IS
- Japanese Standards – JIS
- Sri Lankan Standards – SLS
- Regional Network for Agric. Machinery Standards – RNAM

SLS have only few machineries. Have to follow the mixture of above standards. Farmer view is very important

RNAM

Two Types of Testing and Evaluation - At machinery developing stage and finished product (commercial) testing

Development of Farm Machinery

1. Information Collection - Have to collect required information. Analyze collected information and End with the concept
2. **Design Stage** - Design is based on the gathered information. Complete mechanical drawing. Design also test;
 a. Mechanically sound
 b. Whether this machine come to achieve the objective
 c. Whether this machine replace labour
 d. Whether this machine create any social problems

3. **Prototype Production** - 1st model of the design. Conduct test for error. Identify the best suited model

4. **Commercial Type** - Conduct proper testing and release to the market

Testing and Evaluation of Commercial type

```
Conformation of specifications
    Laboratory tests
        Field performances
            Handling and safety tests
                Long run /durability test
                    Test report
```

3.5.2 Testing and Evaluation of Farm Machinery

- Four wheel tractor
- Power tiller
- Paddy reaper
- Thresher
- Sprayer
- Water pump
- Seeders and planters
- weeders
3.6 Safety Test and Ergonomics

3.6.1 Noise

Exposing loud sound (120 dB (A)) for long time – can hear only large sound. Frequent expose of sound (> 85 dB (A)) – measurable hearing losses. Tractor develop 90 – 100 dB (A)

- 90 dB(A), 2 h No problem
- 90 dB(A), 4 h Problem
- 100 dB(A), 2 h Problem

3.6.2 OSHDA

Organization which makes standards to hearing. They produce Equality Continues Sound Levels (ECSL)
- 100 dB(A), 1 h 84 dB(A) continues
- 100 dB(A), 10 h 94 dB(A) continues
- 100 dB(A), 20 h 97 dB(A) continues

Table 3.1 Permissible noise levels

<table>
<thead>
<tr>
<th>Duration (h)</th>
<th>Noise level dB(A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>90</td>
</tr>
<tr>
<td>6</td>
<td>92</td>
</tr>
<tr>
<td>4</td>
<td>95</td>
</tr>
<tr>
<td>3</td>
<td>97</td>
</tr>
<tr>
<td>2</td>
<td>100</td>
</tr>
<tr>
<td>1½</td>
<td>102</td>
</tr>
<tr>
<td>1</td>
<td>105</td>
</tr>
<tr>
<td>½</td>
<td>110</td>
</tr>
<tr>
<td>¼</td>
<td>115</td>
</tr>
</tbody>
</table>

3.6.3 Measuring of Noise

Use noise level meter. These meter has three scales

- dB(A) for human beings
- dB(B)
- dB(F)

Reducing Noise - Identify the noise places. Use noise reducing methods from;

- Design
- Isolated/enclosed
- Use ear protectors

3.6.4 Vibration

Two types of vibration; Whole body vibration and Part vibration. Whole body vibration cause to nerves problem. Measured by displacement meter. >4Hz is damage to nerves system.
3.7 Ergonomics

The application of scientific information about human being to design of objects systems and environment intended for human use. It involves the application of anatomical, physiological and sociological knowledge and methodology to evaluate and optimize performance and human health safety and comport.

Operator work as power source and controller. Hence machine/equipment should be compatible with; size, shape, strength, senses (Version, like) etc.

3.8 Safety Testing

Basic technical requirement for safety are;

1. safety guards
 - Cover (2 or 3 side cover)
 - Casing (all side cover)
 - Enclosure
2. Safety distance
3. Safety devises
4. Safety signs

3.8.1 Safety Measuring Instruments

- Scale – can measure the safety distance
- Push and pull tester
- Sound/noise level meter
- Vibration/displacement meter
4 MACHINERY MANAGEMENT

4.1 Selection of Farm Machinery

- Trade mark
- Trade name
- Models
- Repairs
- Design
- Ease of operation
- Ease of adjustment
- Adaptability to work and conditions
- Selection of Farm Machinery
- Quick change of units
- Maneuverability
- Comport
- Safety
- Other factors (Power requirement, Cost of operation, Initial cost, Years of service expected, Economic -size of the farm/work to be performed)

Selection of farm equipment depend on Size (Extent) and Type (crop). Seasonal nature of farm work hence farm machinery usage relatively short period of time. High cost during the limited time period. Farm machinery should have high reliability high field efficiency. Machinery selection and management are important to designers and users.

4.2 Machinery Selection Criteria

4.2.1 Field Capacity

Amount of processing per hour of time. There are two types; Area basis and material basis.

On area basis

\[C_a = \frac{VW \eta_f}{10} \]
On material basis

\[C_m = \frac{V W Y \eta_f}{10} \]

\(C_a \) – field capacity area basis (Ha/h) \hspace{1cm} \(C_m \) – field capacity material basis (Mg/h)

\(V \) – Travel speed (km/h) \hspace{1cm} \(W \) – Machine working width (m)

\(Y \) – Crop yield (Mg/ha) \hspace{1cm} \(\eta_f \) – field efficiency (decimal)

Theoretical field capacity \(C_{at}/C_{mt} \) - Field capacity when field efficiency \((\eta_f) \) is equal to 1

4.2.2 Field Efficiency

\[\eta_f = \frac{\tau_t}{\tau_{ac}} \]

\(\eta_f \) - Field efficiency \hspace{1cm} \(\tau_t \) - Theoretical time requirement

\(\tau_{ac} \) - Actual time requirement to perform the operation

Theoretical time requirement \((\tau_t) \)

\[\tau_t = \frac{A}{C_{at}} \]

\(\tau_t \) - Theoretical time requirement to perform the operation (h)

\(C_{at} \) - Theoretical field capacity

\(A \) - Area to be processed (ha)

Actual time requirement \((\tau_{ac}) \)

This can be measured. Larger than theoretical time requirement due to overlap, time for turning and time for loading or unloading

\[\tau_{ac} = \tau_e + \tau_h + \tau_a \]

\(\tau_e \) – \(\tau_{e}/K_w \) – effective operating time (h)

\(K_w \) – Fraction of implement width actually used
τₚ – Time losses that are proportional to area
τₚ – Time losses that are not proportional to area

Example: 4.1

A self-propelled combine with an eight-row corn head for 75 cm row spacing travels at 5 km/h while harvesting corn yielding 9.4 Mg/ha. Losses proportional to area total 7.6 min/ha and are primarily due to unloading grain from the combine. Neglecting any other losses, calculate:

a) Field efficiency
b) Field capacity on area basis
c) Field capacity on material basis

4.3 Machine brake down

Machine break down cause to time losses, hence reduction of field efficiency.

Probability of machine break-down time = 1 – operation reliability

4.3.1 Machine reliability

The mean time between failures. Reliability of a group or components or machine with serial relationship – product of individual reliability

4.4 Machinery cost

Three types:

– Cost of ownership – fixed/overhead cost
– Operation cost – variable cost
– Penalties for lack of timeliness

Cost can be calculated:

– Annually Rs/yr
– Hourly Rs/h
– Per-hectare Rs/ha
Custom cost: The price paid for hiring an operator and equipment to perform a given task.

Comparing cost and custom cost; determine the purchasing or hiring machine

4.4.1 Ownership cost

\[
\text{Ownership cost} \propto \frac{1}{\text{Annual use of machine}}
\]

Ownership cost consist with depreciation of the machine, Interest on invest, Cost of taxes, insurance and housing

Depreciation

The reduction of the value of machine with the time and usage. Largest single cost of machine. Several methods are used for estimating

Straight line depreciation

Simple method.

\[
\text{Annual depreciation} = \frac{\text{Purchase price} - \text{salvage value}}{\text{machine life}}
\]

If no data, assumptions: Salvage value; 10% of purchase value and machine life 10 years

Machine life

Wear out - the repair cost goes uneconomical level

Obsolescence

- Machine is out of production
- Parts are no longer available
- can be used another machine to get profit

Interest on investment

- Cash – prevailing interest rate
– Loan – loan interest
– For simplify: Constant annual interest rate is used

Tax

– Sale tax – assessed on purchase price
– Property tax – assessed on remaining value
– For simplify: Constant tax rate for life time
– Use real tax value,
– No tax values: annul tax charge, 1% of purchase price

Insurance

Based on remaining value and use real insurance cost; should have insurance policy. If there is no insurance policy; owner has to bare risk. Therefore cost for insurance. Annual insurance cost: 0.25% of purchase price

Shelter

Shelter is associated with: Better care maintenance of machine, Improve appearance, and higher resale value. If shelter provide, real shelter cost. If no shelter;

– Economic penalty for reducing machine life and / or resale value
– Shelter cost should be included
– Annual shelter cost 0.75% of purchase price

Cost for taxes, insurance and shelter is assumed as 2% of purchase price

4.4.2 Operating Costs

Cost associated with use of machine (Cost of labour, Fuel and oil and Repair and maintenance)

Cost of labour

– For hired operator – wage of operator
– When owner operate the machine – by alternate use of time
labour cost (Rs/ha) = labour cost per hour \(\frac{C_a}{C_a} \)

Cost of fuel and oil

\[C_s = \frac{P_L Q_i}{C_a} \]

- \(C_s \) – Fuel/oil cost (Rs/ha)
- \(P_L \) – Price of fuel/oil (Rs/L)
- \(Q_i \) – Fuel/oil consumed by engine (L/h)
- \(C_a \) – Effective field capacity (ha/h)

Cost of Oil

10 – 15% of the fuel cost

Cost of repairing and maintenance

Highly variable. Depend on the care of the user

\[\frac{C_{rm}}{P_u} = Rf_1 \left[\frac{t}{1000} \right] Rf_2 \]

- \(C_{rm} \) – accumulated repair and maintenance cost (Rs)
- \(t \) – Accumulated use (h)
- \(RF_1, RF_2 \) – repair factors (form table)
- \(P_u \) – purchase price

Average Cost = \(\frac{\text{Total repair and maintenance cost}}{\text{Economic life}} \)

Average repair and maintenance cost/ha = \(\frac{\text{Average cost}}{C_a} \)
4.4.3 Timeliness cost

- Optimum time period for several field operations.
- Too early/delay – economic penalty
- Timeliness work
 - By increasing machine number
 - Using large machine

\[
C_t = \frac{K_t AYV}{\lambda_0 TC_d P_{wd}}
\]

\(C_t\) – timeliness cost (Rs/ha)
\(K_t\) – timeliness coefficient, fraction of annual crop value lost per day (from table)
\(A\) – Crop area (ha/yr)
\(Y\) – Crop yield (Mg/ha)
\(V\) – Crop value (Rs/Mg)
\(\lambda_0 = 2\), if operation commences or end at the optimum time period
\(\lambda_0 = 4\), if operation can be balanced evenly about the optimum time
\(T\) – Expected time available for field work (h/day)
\(C_s\) – effective field capacity of machine (ha/h)
\(P_{wd}\) – probability of a good working day (decimal) from table

4.5 Farm machinery selection

- Selecting appropriate field capacity problem to - farm operators
- Machinery designers
- Optimum capacity is the achievement
- Same field capacity - compatibility
4.6 Machinery replacement

All machineries have an end of economic life. Reason for Replacement of farm machinery

- Damage by an accident
- Obsolete
- Wear-out
5. FLUID MACHINERY

5.1 Water Pumps

Figure 5.1 Classification of water pumps

5.2 Positive displacement VS variable displacement water Pumps

Table 5.1 Positive displacement and variable displacement water pumps

<table>
<thead>
<tr>
<th>Positive displacement</th>
<th>Variable displacement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discharge does not vary with the head</td>
<td>Discharge varies with head</td>
</tr>
<tr>
<td>Discharge is not depend on the head</td>
<td>Discharge is inversely proportional to head</td>
</tr>
</tbody>
</table>
5.3 Positive Displacement Pumps

5.3.1 Rotary Pump

Figure 5.2 Rotary pumps

5.3.2 Reciprocating Pump

Figure 5.3 Diaphragm Pump
Figure 5.4 Lift Pump

Figure 5.5 Force Pump

5.4 Variable Displacement Pump

5.4.1 Centrifugal Pump

Centrifugal force is generated. Radial flow pump.
Component of Centrifugal Pump

- Impeller
- Casing
- Outlet
- Inlet

Classification Criteria for Centrifugal Pump

1. Type of casing

Figure 5.7 Volute Type Casing
2. Using stages

![Diagram of centrifugal pump classification by stage number: single stage and multi stage with series and parallel stages.]

Figure 5.9 Centrifugal Pump Classification as Using Stages

3. Impeller type

![Diagram of impeller types: open, semi-open, closed.]

Figure 5.10 Centrifugal Pump Classification as Impeller Type
4. **Position of the casing**

![Vertical and Horizontal Pump Diagram](image)

> Figure 5.11 Centrifugal Pump Classification as Position of the Casing

5. **Power supply**

![Direct Drive and Belt Drive Diagram](image)

> Figure 5.12 Centrifugal Pump Classification as Power Supply

6. **Type of suction**
 - Single Suction
 - Double Suction
7. Priming ability
 - Self-priming (SP)
 - Non self-priming (NSP)

![Figure 5.13 Self-priming Water Pump](image)

5.4.2 Axial flow/Propeller/Turbine Pump

Large discharge for low head. Use to flood control

![Figure 5.14 Turbine Pump](image)
5.4.3 Mixed Flow Pump

5.5 Other Pump Types

5.5.1 Jet Pump

Not use in now. Can get higher suction head > 10 m. Having huge casing. Used as deep well kit.
5.5.2 Air Lift Pump

Compressed air is passed though the tube to bottom and increased the pressure of the bottom. Then water is passed through discharge tube.

![Figure 5.17 Air Lift Pump](image)

5.5.3 Vane Pump

Use to pump high viscous fluid

![Figure 5.18 Vane Pump](image)

5.5.4 Hydraulic Ramp

Simple devise. Use to lift flowing water to small height.
Reference

